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The interaction between internal waves (IW) and wind waves is studied. Three 
types of interaction are considered: spontaneous IW generation by a random field of 
WWs, and two feedback mechanisms - modulation and friction. 

The latter mechanism has not been studied before. Its influence on the IW-WW 
coupling is of primary importance. The modulation and friction mechanisms result in 
exponential attenuation of the IWs. Attenuation of IWs propagating against wind is 
the strongest. The IW attenuation has a dimensionless decrement of order 
whereas for storm winds it attains the value of lo-'. Joint action of the spontaneous 
generation of IWs and their attenuation due to feedback mechanisms permits a 
stationary ' wind-IW' spectrum to exist. For strong winds the ' wind-IW' energy is of 
order lo6 erg an-'. The effect of IWs on currents in the ocean's upper layer is 
considered. Momentum and energy lost by I W s  due to their interaction with WWs 
generates inertial oscillations. Under the attenuation of intensive IWs, the amplitude 
of inertial oscillations may be compared with the background Ekman current. 

1. Introduction 
Wind waves are the coupling links in the processes of momentum and energy 

transport from the atmospheric boundary layer to the ocean surface layer. Keeping the 
spectrum level in the equilibrium state, WWs transfer energy and momentum from the 
atmosphere to small-scale turbulence and drift currents. These processes occur mainly 
by wave breaking (Phillips 1985). Major losses of WW energy are spent on generating 
small-scale turbulence, whereas momentum losses induce drift currents. 

An important element of the ocean upper-layer dynamics is internal waves (IW) on 
the seasonal thermocline. Surface currents of IWs cause variations of spectral and 
integral WW parameters, and under moderate and strong winds they lead to variations 
of wave breaking. The effects of IWs on WWs are well-known and have been recorded 
many times both by remote and in-situ sensors (see, for example, Hughes and Grant 
1978; Dulov, Klyushnikov & Kudryavtsev 1986; Ape1 et al. 1988). The important 
characteristic of WW-IW interaction is the existence of a phase difference between 
thermocline displacements and WW anomalies, and the difference of its value from 0" 
or 180". It indicates the fact that there are energy losses in the 'surfaminternal wave' 
system. 

The scientific literature provides a quite detailed description of two mechanisms of 
energy and momentum exchange between IWs and WWs. The first is 'spontaneous 
generation' (Brechovskich et al. 1972; Watson, West & Cohen 1976; Olbers & 
Herterich 1979). This mechanism results from the resonant three-wave interaction 
between a pair of surface waves and an internal wave. Spectral components of the 
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surface waves satisfying the resonance condition generate IWs from a state of rest. If 
the wavenumbers of the WWs are much larger than the IW wavenumber, the 
spontaneous mechanism of generation may be interpreted as the resonant swinging of 
the thermocline by vertical motions related to groups of surface waves formed as a 
result the superposition of waves with random phases. The modulation mechanism is 
also a result of three-wave interaction between WWs and IWs but, in contrast to the 
spontaneous mechanism, the WW envelope results from the transformation of WWs 
in the field of the IW surface currents (Dysthe & Das 1981 ; Kudryavtsev 1988; Watson 
1990). Vertical motions related to the forced WW groups act to enhance (or to 
suppress) the thermocline oscillations. Thus, the modulation interactions constitute the 
feedback mechanism. Modulation interaction results in exponential growth or decay of 
IWs depending on environmental parameters. Estimates of the effectiveness of these 
two mechanisms carried out by Watson (1990) showed that for typical ocean 
conditions the mechanism of modulation interaction turned out to be more effective. 

The presence of dissipative processes in WWs inevitably requires consideration of 
the third mechanism of IW-WW interaction, which may be called a friction 
mechanism. This mechanism is analogous to a mechanism of ‘long’ surface wave 
growth caused by losses of ‘short’ WW momentum (Longuet-Higgins 1969). Longuet- 
Higgins called this mechanism a ‘maser mechanism’. The origin of the friction 
interaction mechanism is connected with the work done by surface stresses (equal to 
WW momentum losses) against the long-wave orbital motions. The application of this 
mechanism to IW-WW interaction was considered by Kudryavtsev (1988). It is 
important to emphasize that the modulation and friction mechanisms should exist 
simultaneously, as variations of WW energy (momentum) in the presence of IW 
currents are followed by variations in WW energy (momentum) losses. We may expect 
that consideration of the friction mechanism will provide significant changes in the 
description of WW-IW interaction. For example, Hasselmann (1971) noted that the 
‘maser’ mechanism of long-WW growth could be balanced by the attenuation 
mechanism due to the modulation interaction between ‘short’ and ‘long’ surface 
waves. 

In real conditions wind surface stresses induce drift currents in the upper mixed layer 
of the ocean. Therefore, interaction of surface and internal waves should be considered 
in the dynamic system ‘WW-IW-drift currents’ into which energy and momentum 
come from atmosphere. If IW are absent the system ‘ WWkIrift current’ is dynamically 
balanced. IWs appearing in this dynamic system interact with WWs and distort the 
equilibrium distribution of energy and momentum coming from the atmosphere to the 
ocean upper layer. Distortion of this balance results in inertial oscillations of the drift 
current velocity. 

The main aim of the present paper is to analyse the interaction of wind waves with 
IWs, taking into account three mechanisms : the spontaneous mechanism, the 
modulation mechanism and the friction mechanism. Surface waves are considered not 
as free waves but as wind waves which obtain energy from wind and lose it due to wave 
breaking. It is of primary importance to introduce the friction mechanism without 
which the analysis of WW-IW interaction is not correct. As will be shown later the 
combined action of the modulation and friction mechanisms leads to IW attenuation. 
That is why we consider two cases. In the first case, IWs are generated by the 
spontaneous mechanism and they grow until they are balanced by the attenuation 
mechanism. In this case the formation of a stationary wind-IW spectrum is possible. 
In the second case, IWs are generated by an external source, and their further evolution 
is conditioned by the attenuation in their interaction with WW. The effectiveness of 
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those IW-WW interaction mechanisms is considered depending on environmental 
parameters (stratification, wind velocity and direction). The IW and WW coupling is 
studied against the background of the drift current. The presence of turbulent friction 
in the upper uniform layer results in the generation of inertial oscillations. These 
movements receive momentum and energy which are lost under WW and IW 
interaction. 

Dynamical interactions in the system WW-IW-drift currents are analysed based on 
the integral laws of energy and momentum conservation proposed by Phillips (1977). 
This approach makes it possible to describe quite easily and uniformly some complex 
dynamical processes in the upper ocean layer which occur in WW and IW interaction. 

2. Governing equations 
The main feature of the vertical structure of the ocean upper layer consists of a 

uniform layer with constant density (po). Mixing processes in this layer are caused by 
turbulence of convective-wind origin which is suppressed in the vicinity of its lower 
boundary. Below the mixed layer there is a pycnocline which is a wave guide for 
internal gravity waves (IW). 

In the most general case, turbulence, wind waves, internal waves and drift currents 
exist simultaneously in the upper layer. Drift currents generated by tangential surface 
stresses do not propagate below the uniform layer, where turbulence is absent. Within 
the uniform layer the drift current velocity is considered to be weakly dependent on the 
vertical coordinate,. However, a sufficient condition is if the vertical variability scale of 
the drift current velocity exceeds the inverse of the WW wavenumber. The uniform 
layer thickness (h) is chosen in such a way that the orbital motions on the lower 
boundary of the mixed layer are absent exponentially. Further, we will also consider 
IW whose wavelength is much larger than that of the WW spectral peak. The strong 
differences between WW and IW spatial-temporal scales and the constancy of the drift 
current velocity with depth permit us to employ in the analysis simple integral laws of 
momentum and energy conservation as proposed by Phillips (1977). 

Consider the equations of the WW energy and momentum balance and ‘low- 
frequency’ motions (including IW and drift currents). We will obtain ‘ low-frequency ’ 
fields through averaging of the initial fields according to the spatial scales that exceed 
lengths of the energy-carrying WW, but which are less than both IW and drift current 
scales. In g2.1 and 2.2 we will present all the necessary equations, together with brief 
comments. The detailed derivation of the equations of energy and momentum balance 
of wave and low-frequency motions is given in Phillips (1977) and also in Hasselmann 
(1 97 1) and Crapper (1 979). 

2.1. Momentum 
The equation of total momentum balance integrated within the mixed layer 
- h < x, < 7 (7 is the upper boundary) and averaged over WW spatial scales, has the 
form (Phillips 1977, equations 3, 6, 11): 

where M: is the WW momentum; S 3  is the tensor of WW radiation - stress; $ is the 
vertically integrated tensor of viscous and Reynolds stresses; T,(q) is the momentum 
flux through the free surface; E(h)  is the momentum flux through the lower boundary 
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of the mixed layer (E = -pog(q + h) ahlax,), g is the acceleration due to gravity, and 
f= ( O , O , f )  where f is the Coriolis parameter. 

In (l), overbars denote averaging over WW scales. This equation differs from the 
equation of total momentum obtained by Phillips (1977), by the presence of the 
integral Coriolis force and momentum flux through the ocean surface. Momentum 
flux through the upper boundary is presented as the sum of a momentum flux due 
to the ___. wave motion 7: and a tangential stress acting on the average surface 

Let us write the equation of the WW momentum balance in the following form: 
7,(?j) : T,(q) = 7," + 7,m. 

where d," are the WW momentum losses due to wave breaking. This equation may be 
obtained from the equation of the WW wave action spectrum conservation (see (35)  
below). Momentum and radiation stresses for WWs on deep water are connected with 
the action spectrum N(k) by the equations 

M: = k, Ndk, (3  a )  

S,"' = - 1, la wNdk, ( 3  b) 

J 
2 'S  

where integration is done over the whole WW spectrum, k, is the wavenumber 
component, 1, = k, /k;  k, w are the wavenumber magnitude and the frequency. If we 
multiply (35 )  by k, and integrate it over the whole WW spectrum, then taking into 
account (3a, b), we obtain (2). 

Having subtracted (2) from the full momentum balance, (l), we obtain the equation 
of mean current momentum balance : 

a a 
ua(7 - - + h11 +-bo na gp((il+ + i a a p  ~ o g ( 7  + h)'- ZBI 

"XB at  

In (4) the term eapfpM: is eliminated. This term may be interpreted as the surface 
force acting upon mean currents in the direction normal to the WW momentum. The 
influence of this force on mean currents is equivalent to the force sbji +7,. However, we 
should expect that the force magnitude elralfg M y  is significantly smaller than the total 
friction force e + 7, - pa C, W 2  ( Wis the wnd velocity, pa is the air density, C, is the 
drag coefficient) applied to the surface. If MW is estimated as 

MW - (2-5) x 10-3po w3/g, 

then ~ X P / ( P  + 7)  - 103fwlg. 

Withf= s-' and W = 10 m s-' the relation is equal to 0.1. Hence, from now on 
we will not take into account the term E , ~ & ~ M ~  in the equation of the mean current 
momentum balance. 

Using the continuity equation integrated over the - h  < xa < ?j layer 

- ( ? j + h ) + a [ a p ( ? j + h ) + g ]  a = 0 

at % Po 
(5)  
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rewrite (3) in the following form: 
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It follows from (6) that WWs affect the mean current in the mixed layer through the 
'friction force' c, equal to losses of WW momentum, and through the force 
conditions by the vertical vorticity of the mean current. 

2.2. Energy 
Let us multiply ( 5 )  by h0 d and (6) by iia, and sum the expressions obtained. After 

certain transformations we obtain the equation of mean current energy conservation 
in the form analogous to Phillips (1977, equations 3, 6, 22): 

aE a 
- + - [u&E + h0 g(T+ h)2) - a, Ep] 
at axp 

where E = &~~i?(@+ h) + $ ~ ~ g ( p -  h2) is the mean total energy of the motion, 
D' = qpaiza/axa is the mean current energy loss due to the work of Reynolds stresses 
against the shear velocity. On the right-hand side of (7) describing the interaction 
between WWs and the mean motion, we omit the terms O(MWiP) as they are 
substantially smaller than the remaining ones. The first term on the right-hand side of 
(7) describes variations in mean current energy due to the energy flux through the 
surface 7. The mean surface 7 is permeable, and the flux is formed by a vertical velocity 
u3 - a(MF/po)/axxs caused by spatial variations of the WW momentum. The second 
term describes energy changes due to the work of surface friction forces, one of which 
is equal to WW momentum losses. 

We also need the equation of the WW energy balance, which we will write in the 
following form (see, for example, Phillips 1977): 

where EW is the WW energy, 5 is the energy flux due to the wave motion, Qw is the 
energy source including the input from wind (Q:) and losses due to wave breaking 
(DW). 

3. Momentum and energy of I W s  and drift current 
Let us divide equations (4) and (7) into two pairs of equations for the energy and 

momentum balances of IWs and drift currents. 
For this purpose let us represent the current velocity and the displacement of the 

upper and lower boundaries of the mixed layer as a sum of undisturbed values and IW- 

h = &, t )  + h,, (0 = 0, (9) 
T = r(x, 0, (7) = 0, 

where angle brackets denote an average over the IW wavelength. Values averaged over 
the IW wavelength are horizontally uniform. Let there be no drift currents below the 
uniform layer, i.e. Ua = 0 at x3 < - h. We now substitute (9) into (4) and (7) and average 
them over the IW wavelength. Expressing the averaged fluxes of momentum (E) and 
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energy (p ,  g(q + h) ah/at) through the mixed-layer lower boundary as changes of the 
momentum and energy beneath the layer (x, < -h) 

we obtain the following equations : 

a 
- at (E' +&oh, U 2  + mf UJ = - (gq?) + (u, e) + U,((@) + (T,)) - (D'), (1 1) 

where H is the ocean depth, M;,  E' are IW momentum and energy, and 
mf = p,(u,(q+h)) is a part of the IW momentum concentrated in the mixed layer. 

Further analysis requires prescription of the stratification model. We consider IWs 
with wavenumbers K < hi1, which can induce currents on the surface currents, 
providing coupling with surface waves (see (43) below). IWs with wavenumber K > h, 
have an eigenfunction in the mixed layer which decreases exponentially towards the 
surface, and coupling of IWs with WWs does not occur. In real conditions the 
inequality Kh, < 1 is also fulfilled for the thickness of the seasonal thermocline which 
is the IW wave guide. In this case the two-layer approximation for the vertical 
distribution of density p(x,) should become a reasonable approximation if the model 
parameters are defined in the following way (Burdyugov & Grodsky 1990): 

" = - I ,  x,N2dx3 / I H  Wdx3, (12) 

AdPo = t P l H W d X 3 ,  (13) 

where W(x3) is the Brunt-Vaiasala frequency profile. For the two-layer model p(x3) 
and U,(x,) (U, = 0 at x, < - h0), the dispersion relation, energy and momentum of IWs 
will have the following forms: 

(14) 
E' = iApgA2, (15) 

Q: coth Kh, + Q2 = g(Ap/po) K, 

K = Po(S(ua(-h-O)-u,(-h+0))) 

Here A is the amplitude of thermocline displacement (S), f2 is the IW frequency, 
Qd = Q - K ,  U,. Expressions (14)-(17) are written in the approximation KH > 1. The 
system of equations (10) and (1 1) may be solved using (1 6) and (17) for the IW and drift 
current momenta : 
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Equations of current energy balance are obtained by multiplying (18) by U,, and the 
equation of IW energy balance follows from (19): 

The first two terms on the right-hand sides of (19) and (21) describe IW and WW 
energy and momentum exchange during their interaction. The first term describes 
changes of IW energy and momentum caused by energy and momentum fluxes through 
the averaged free surface. These fluxes are formed by vertical motions generated by 
variations of WW momentum. If these spatial variations result from WW 
transformations in the field of IW orbital velocities, an upward or downward flux 
appears which provides energy and momentum exchange between WW and IW (the 
mechanism of modulation interaction) (Dysthe & Das 1981 ; Kudryavtsev 1988; 
Watson 1990). The second term on the right-hand sides of (19) and (21) describes 
changes of IW energy and momentum due to the work of tangential surface stresses 
(equal to WW momentum losses) against IW orbital velocities (Kudryavtsev 1988; 
Thorpe, Belloul & Hall 1987). This mechanism is analogous to the ‘maser’ mechanism 
of long surface wave growth caused by short-wave momentum losses described by 
Longuet-Higgins (1969). 

The calculation of the correlation (u,@) is inevitably connected with the problem 
of describing WW energy dissipation, the correct form of which is not known. 
However, the work of momentum losses against IW orbital velocities may be expressed 
through other WW parameters. For this purpose multiply (2) by u, and average the 
resulting expression over the IW wavelength. Deleting the terms of O(Mwu2) we have 

This expression connects the work of WW momentum losses against IW orbital 
velocities with the work of momentum flux towards WW from the atmosphere, vertical 
energy flux through the surface and the work of radiation stresses. Taking into account 
(22) we may rewrite (20) and (21) in the following form: 

(23) 
Q 1 + (D,/Q)2 coth Kh, 
0, 1 + (Q,/0) coth Kho ’ X- 

Note the following. If we assume in (23) that K ,  U,/Qd x 0, it may be formally used 
for describing the energy variation of a ‘long’ WW in its interaction with a ‘short’ 
WW. This equation corresponds to equation (25) in Hasselmann (1971) if we assume 
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that ( ~ Z U , )  = 0 (Hasselmann neglected variations of 'short' WW momentum inflow 
under their interaction with a 'long' wave). The correlation (7224,) may become zero 
if the WW spectrum variations are displaced by relative to the long-wave profile. If 
this phenomenon occurs in the interaction of surface waves (ripples are intensified on 
the long-wave slope), WW-IW interaction occurs without it. The latter statement 
results from the comparison of IW wavelengths (- 102-104 m) and the spatial scale of 
WW development (- lo4 m). Note also that it follows from the equation of the energy 
balance (8) that for free surface waves (Q" = 0): 

a -(Ew) = 
at 

Then (23) provides conservation of total IW and WW energy in a non-dissipative 
medium (D' = 0): 

(26) 
a 
at 
- ( E r + ( E W ) )  = 0. 

4. IW-WW interaction 
Here we shall consider IW-WW coupling occurring in the form of three mechanisms : 

the spontaneous, modulation and friction mechanisms. All three mechanisms are 
included in the IW energy equation written in the form of (21) as well as in (23). In a 
more specific form the correlation 

is responsible for the spontaneous and modulation mechanisms, whereas the 
correlation : 

is responsible for the friction mechanism. Equations (21) and (23) also contain the term 
D' which describes IW attenuation due to turbulent viscosity. 

The spontaneous and modulation mechanisms may be separated in the following 
way. Let us present the WW momentum as a sum of three terms: 

(u, d,") (28) 

M ;  = ( M ; )  + W; + &$', (29) 

where ( M F )  is the WW momentum averaged over IW spatial scales, is the WW 
momentum variations induced by WW transformation on IW currents, and A?; are 
WW momentum variations which are conditioned by the stochastic character of the 
surface wave field. In the latter case A$' is controlled by the group structure of surface 
waves formed under the superposition of waves with random phases (Longuet-Higgins 
1962). In expresses M ;  in the form (29), the correlation (27) acquires the form: 

The first term on the right-hand side of (30) describes the modulation mechanism. As 
variations of a7 induced by the IW current, this mechanism is the feedback one. Note 
that if the phase shear between 9 and 3; equals 0" or 180" (that if, characteristic of 
the interaction between free surface waves and IWs, in (8) Qw = 0), the modulation 
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mechanism does not work. The second term on the right-hand side of (30) describes the 
spontaneous mechanism of IW generation by random WW groups. This mechanism 
may take place only for those groups of surface waves which satisfy the resonance 
condition, 

where K is the wavenumber vector of the WW group and c, is the group velocity. The 
conditions (31) are equivalent to the three-wave resonance conditions of two surface 
waves and one internal wave: 

K = K, K-C, = SZ, (31) 

k l - k ,  = K, w1-w2 = 9. (32) 
Under fulfilment of resonance conditions (31) we may easily make sure that 

hence (21) and (23) are equivalent for the description of the spontaneous mechanism. 
if we use (21) or the momentum inflow 7," (for 

(23)) may also be presented as sums analogous to (29). Then the correlation (28) takes 
the form 

Variations of the momentum losses 

(u,d,") = (u,a,">+(u,@). (33) 
The first term on the right-hand side of (33) describes IW energy changes by 

variations of momentum losses, which are the result of the WW transformation on 
IW currents (the friction mechanism). The second term describes the work of random 
friction forces, which result from the WW group structure. However, under the 
functioning of the spontaneous mechanism, the phase shear between the IW current 
and resonant random WW groups is equal to in. Therefore, the work of variations of 
friction forces referred to these groups is equal to zero. 

In this section we have derived expressions for the three mechanisms of coupling 
between IWs and WWs 

4.1. Modulation and friction feedback mechanisms 
To calculate the correlations 

describing interaction between WWs and IWs, we need variations of the WW 
momentum M r ,  its inflow from the wind 7," and variations of radiation stresses SF' in 
the IW current field. These characteristics of WWs are expressed in terms of the wave 
action spectrum in the following way: 

1 
k,Ndk, Sap - - l,lpWNdk, (34~-C) 7," = l k > o p ~ k a N d k ,  M z  = j k > O  

- 2 J k > 0  

where w, k, are WW frequency and wavevector, k = Ik(, 1 = k / k ,  p is the coefficient of 
surface wave-wind interaction, N = pogS/w, S is the spectrum of surface displacement. 
Variations of N in the IW orbital velocity field may be determined from the equation 
(Phillips 1977) 
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Let us represent the source of wave action (q) as a sum : q = q, + q b +  q,, where qw is 
the wind input; qb are losses due to breaking waves, qn descnbe the resonant 
wave-wave interaction. 

Wave action input from wind to waves is written in the form of qw = BUN, where for 
the coefficient of wind-wave interaction (/3) one may parameterize the results of field 
and numerical experiments (Makin 1989; Plant 1982; Snyder et al. 1981). Application 
of the source q, in a form of a ‘collision integral’ presents some serious calculation 
problems. We shall consider that the energy transport over the spectrum is the most 
effective in the interaction of neighbouring wave components. Then qn is a nonlinear 
function of the spectrum level N. The form of qb is not known exactly and various 
theories are possible. Here it is quite enough to consider that spectral energy loss due 
to wave breaking is a nonlinear function of the spectrum level qb = qb(N). In a 
horizontally uniform medium the balance of these source components produced a 
stationary spectrum No which depends on wind speed and on the stage of wave 
development. 

Consider WW spectrum transformation in the surface current field of an IW 
propagating in the direction of the axis x,. Let the IW be a wave with small amplitude, 
i.e. urn K / 8  -4 1, where urn is the amplitude of surface current velocity oscillations. In 
this case spectrum variations of WW action (a) will also be small and may be 
determined through the linearized equation (35) 

aA aA au aiv A 
at ax, ax,ak, 7 
- + ( c g l + U l ) - - k l ~ ~  = - - a  

Here c,, = aw/ak, is the group velocity component, No is the spectrum of WW action 
in the absence of IWs, U, is the drift current projection on the axis xl, 7 is the parameter 
of the WW-spectrum disturbance relaxation. The relaxation parameter connects 
disturbances of the source q (in (35)) with the spectrum variations. As we assume that 
all source components are nonlinear functions of the spectrum level it follows that 

where 7-l = -@ - ( a / a N )  (q, + qb). The parameter 7 will be discussed in $5.1. The 
relaxation approximation is often used for describing the wave spectra evolution on 
currents (Phillips 1984; Alpers & Hasselmann 1978; Ape1 et al. 1988). In each specific 
case the form of the parameter 7 depends on hypotheses imposed on the dependence 
of q on N. 

Let the IW current velocity on the surface be defined by the following expression: 

(38) u = urn exp (i(Kx, -at)). 
In this case the following expression can be obtained from (36) for the complex 
amplitude variations of N: 

fi = (N, + iNi) exp (i(Kx, -at)), (39 a) 
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It follows from (39) that for spectral components propagating along the IW current in 
the quasi-adiabatic regime, ra(Q, - eel K)a % 1, the variations of N are either in phase 
or anti-phase with the field u depending on the sign of (Q, - cgl K). Wave components 
subjected to strong wind forcing (r2(Qd - c,, K)' 6 1 have spectrum variations shifted 
by :7c with respect to the current, and the maximum of N is located in the region of 
surface current convergence. Let us define an IW-WW interaction coefficient in the 
following way : 

Then it follows from (23), (21) and (16) that 

a = (QE')-l aE'/at. (40) 

a, is the component of the full interaction coefficient due to the mechanism of 
WW-IW modulation interaction. 

Oscillation amplitudes of the free surface (qm), and current velocity (u,) are related 
to the thermocline oscillation amplitude (A) through the expressions 

*: A, u rn=-  A. 
= -gKsinh (Kh,) sinh (Kh,) (43) 

Using (34), (39) and also (15), (16) the interaction coefficients a and a, may be written 
in the following form: 

Qd K3 
Qa sinhe (Kh,) (1 + (Q,/Q) coth Kh,) 

a =  

k, r AN, dk, (45) 
Q: K e  

am = Qa sinhe (Kh,) (1 + (Q,/Q) coth Kh,) Ik, , 
In order to calculate the coefficients of WW-IW interaction, we have to prescribe 
the undisturbed WW spectrum (No) and the relaxation parameter. Corresponding 
calculations for the wave spectrum characteristic of real conditions, will be presented 
in $5. 

(a) Narrow WW spectrum 

model 
Here we want to show the qualitative analysis introducing the narrow-spectrum 
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where Er is the surface wave energy not disturbed by IWs and concentrated on the 
wavenumber k, and in the direction 8,. Let us consider a few simple situations. 

(9 kg1I B c 
This case may be referred to the estimate of IW-WW interaction coefficients under 

a strong wind blowing not normal to the direction of IW propagation. Introducing the 
spectrum model (46) into (44) and (49, we obtain the following form of the interaction 
coefficients : 

1 + B p w p 7  c k2 E y  
p~-(cos2@w-~cos2@,), (47) 

7 
a%- 

sinh'(Kh,) (1 + coth Kh,) w p  7, C g 

1 kiE,W cos ow, -- 12 
a, M- 

sinh' (Kh,) (1 + coth Kh,) 7p op g 

where C is phase velocity of the IWs. 
In (47) and (48) the indices p denote values related to the spectral peak, and c p  is the 

WW phase velocity. These expressions show that under the modulation interaction 
WWs propagating with the wind attenuate, whereas those propagating against the 
wind are intensified. However, consideration of the friction mechanism results in IW 
attenuation in all directions in relation to the wind. It follows from comparison of (47) 
and (48) that 

i.e. the friction mechanism results in considerably stronger IW attenuation than the 
attenuation/growth resulting from the modulation interaction alone. It also follows 
from (47) and (48) that the smaller Kh,, the stronger is the interaction: at Kh, B 1, 
IW-WW coupling does not occur. With the known 7, we may estimate a. If the 
expression of Phillips (1984) 

(49) 

is taken as the model of the source q (see (35)), then 

I a I A a m l  - C,lC B 1, 

= wpN( 1 - P/%) 

At Kh, 4 1, proceeding from (47) we obtain the estimate 

At Kh, = 0.2, /3, - lob4, k : E y / g  = lo-' and c,/C = 10, and (51) yields a - lop3. 

(ii) cgl M C and c, %- C 
Such a situation may be realized when the wind direction is almost normal to the IW 

direction. In this case WWs are synchronous to the IWs. For the model of the narrow 
WW spectrum, the coefficients a and a,,, are equal and are found from the expression 

K Q  k i E r  -- 4 a = -  
sinh' (Kh,) (1 + coth Kh,) k, op OP ' g 
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Equality between the coefficients a and a, is conditioned by the fact that at almost 
normal propagation of WWs and IWs, WW momentum losses do no work against the 
IW currents. Choosing, as before, Kh, = 0.2, 8, - c,/C = 10 for 
estimates, and also prescribing K / k ,  = 4 x we obtain the estimate a - lO-l, i.e. 
the IW attenuation in this case is rather strong. 

(iii) cg < C 
This case does not refer to the WW-IW interaction. However, it may related directly 

to the problem of short and long WW interaction analysed by Longuet-Higgins (1969) 
and Hasselmann (1971). The expression (44) may be used for calculating the coefficient 
of long an short WW interaction, when we substitute unity for sinh2(Kh,) 
(1 +cothKh,). For the narrow WW spectrum the interaction coefficients (44) will 
acquire the following form: 

k i  E f / g  = 

The expression (53) is written for the angle 8, = 0". It follows from (53), that long 
WWs grow under the interaction with short WWs. The main contribution to a is from 
the term (7,Wu,) which was not considered by Hasselmann (1971). This term is C/c ,  
times larger than the work of the radiation stresses against the horizontal shear of the 
current velocity which, as Hasselmann (1971) noted, result in attenuation of the long 
WWs. Formally, our result is equivalent to that of Longuet-Higgins (1969) which, 
however, referred to the work of momentum losses (in our case, it is the work of the 
momentum inflow). 

Let us estimate a. For this purpose assume that Q7p % 1, /3, = 4 x 10-2(u,/cp)z 
(Plant 1982; u* is the friction velocity), cp - 3 4 ,  c,/C - lo-', k , E f / g  - 10-1-10-2. 
Then the estimate of a will be a = 2 x (10-4-10-5), which may attain values 
corresponding to the wind-long surface wave interaction coefficient (- under its 
interaction with steep short WWs (k ,Er/g - lo-'). 

4.2. Spontaneous mechanism 
Neglecting Doppler shifts as compared to the IW frequency (i.e. KUJQ 4 l), and 
taking into account the spontaneous mechanism, the equation of the IW energy 
balance may be rewritten in the form 

If the WW momentum variations A$ are induced by a random wave group, the 
growth rate of the IW energy spectrum (E'(K, 8)) equals (see the Appendix) 

a E'(K, S) = sinha (Kh,) 4xp, (1 52'K + coth Kh,) jk"cos ' (8 , -S)~' (k ,8 , )dk ,  ( 5 5 )  

which S(k,S,)  is the two-dimensional spectrum of WW elevations in the direction 
satisfying the resonance condition 

(56) cos (8, - S )  = C/c,(k). 

The expression (55) is written for the two-layer stratification model and is equivalent 
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to the result by Olbers & Herterich (1979) (see also expression (3.16) from Watson 
1990). 

The two-dimensional spectrum of the surface elevation S(k, 8) is usually represented 
in the following form: 

where F(k) is the wavenumber spectrum, A@-8,) is the angular spreading of the 
energy, and 8, is the wind direction. For the developed WW spectrum, at moderate 
and strong winds, the wavenumber of the WW spectral peak is considerably smaller 
than the wavenumber k, = g/4C2 satisfying the resonance condition for W groups 
propagating along the IWs. As the main contribution to the integral in (55) is in the 
vicinity of the WW spectral peak, (55) may be rewritten approximately as 

S(k, 8) = F(k)A@ - Ow), (57) 

a 16np, yQ6 W8 
- E'(K, 8) = -f (@r- @,I, at sinh2 (Kh,) (1 + coth Kh,) Kg5 

where f ,  is the angular spreading of the energy in the vicinity of the spectral peak, 8, 
is determined from the group velocity at the spectral peak, y is a dimensionless 
coefficient of order - determined by the integral of the normalized WW 
spectrum: 

(59) 

It follows from (58) that the rate of the IW energy spectrum growth is strongly 
dependent on the wind velocity. IW energy is maximum in the direction almost normal 
to the wind (C/c,(k,) 4 l), whereas the IW-energy angular spreading corresponds to 
the square of the WW-energy angular spreading. These conclusions correspond with 
those of Olbers & Herterich (1979) and Watson (1990). 

y = /om K ~ ~ ' ( K ) ~ K ,  K = kW'/g, 4 = g4W-'F. 

5. Calculation of WW-IW interaction coefficients for real conditions 
Let us calculate the modulation and friction coefficients of IW and WW interaction, 

(44) and (45), using parameters which are characteristic of real conditions. For the 
calculations it is necessary to prescribe a background spectrum of sea surface elevations 
and the relaxation time of disturbances to this spectrum. 

5.1. WW spectrum and its transformation 

(a) Background spectrum 
Let us prescribe the undisturbed spectrum of sea surface displacements using the 

form proposed by Donelan, Hamilton & Hui (1985). For developed WWs this 
spectrum has the form 

= 0.7(k,/k)2-iexp[- 1.2(1.2(k/k*)1/2- 

where k, = g/ W2, a = 2.7 x lo-', 8 is the propagation direction of the spectral 
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component, and 8, is the wind direction. In calculations the parameter CT* is assumed 
to be constant at cr* = 1.6. 

(6) Spectrum relaxation parameter 
The relaxation parameter 7, introduced in $4.1, connects variations of the have 

action source with spectrum level variations. With such a determination of the 
relaxation parameter, T should not depend on the origin of the disturbance and should 
be defined by the form of the undisturbed spectrum. Assume that in the absence of 
currents, there exists a stationary WW spectrum No, and at the moment t = 0 the wind 
velocity changes by an amount 6W. Then the equation for evolution of the WW 
spectrum disturbance (SN) will take the form 

a 
at 
- 6N = ~ S p l v ,  - 6N/7,  

where 6/3 = (ap/aw) 6W are variations of the wind-wave interaction coefficient. 
Solution of this equation (with the initial condition 6N = 0 at t = 0) has the form 

(61) 

Solution (61) describes the change of the WW spectrum from one stationary state to 
another one. At t % 7 ,  variations of the spectrum level in a new stationary state will be 
used for determining the relaxation parameter T if that spectrum's dependence on the 
wind velocity is known: 

6N = w6p7N0( 1 - exp (- t /7)) .  

For example, for the spectrum F - ~ W W - ~  (Toba 1973) and the coefficient of 
wind-wave interaction p - (Wk/w)' (Plant 1982) the spectrum relaxation parameter 
equals w7 = (2p)-'. The same relaxation parameter may be obtained from the model 
form of the source in which energy input from wind is balanced by nonlinear losses 
proportional to the cube of the spectrum level (Phillips 1985). In problems on WW 
spectrum transformations on non-uniform currents this type of source is written in the 
form (49). Determination of the relaxation parameter of the WW spectrum requires 
prescription of the wind-wave interaction coefficient. The following parameterization 
of interaction coefficients is the most widely used: 

A = (0.2-0-3) @,/p0) W / c -  1) (63) 

p, = (2-4) C,( W/c)' (64) 

for the vicinity of the developed WW spectral peak (Snyder et al. 1981), and 

for the 'high frequency' part of the WW spectrum (Plant 1982). In (63) and (64), 
c = w / k  is the phase velocity and C, is the drag coefficient. 

Results of numerical experiments (Makin 1989 and Burgers & Makin 1991) show 
that at W / c  c 1 the parameterization (63) remains true, and ,8 has negative values. The 
same experiments testify to the fact that at 18 -@,I < 60" in parameterization (63), 
(64) will also describe the angular dependence of the wind-wave interaction coefficient 
if Wis substituted for Wcos (8 - 0,). Let us prescribe ,8 as a combination of (63) and 
(64). For certain values of the parameter W/c,  let us require equality not only of p, and 
BP, but also of their derivatives a/?/aW. The latter is necessary for us to make the 
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loo , 

FIGURE 1. Relaxation time of WW spectrum disturbances as a function of wavenumber: 
-, (62); - - -, (Watson 1990); - --, (67a). 

relaxation parameter 7 continuous over the spectrum. These conditions may be 
satisfied if the wind-wave interaction coefficient is present in the following way: 

with CD = 1.5 x 10-3,p,/p0 = 1.2 x lop3. 
Figure 1 presents spectral variations of the @-integrated parameter of spectrum 

relaxation (62) calculated using (60) and (65): 

in the whole band of wavenumbers T > 0 that provides spectrum stability to small 
disturbances. The same figure shows two other relaxation parameters : one is used in the 
calculation of Watson (1990), and the other proceeds from the source in the form of 
(49) with /3 determined by (65): 

1/7 = 20p(@, W/c)e-gw- (67 a> 

(c) WW spectrum transformation on IW currents 
For IWs of small amplitude propagating along the axis x,, the WW spectrum 

transformation is described by (39). Having prescribed the relaxation parameter in the 
form (62), and using the spectrum (60) as the background WW spectrum, we can 
calculate WW spectrum variations induced by IW. For the calculations we define the 
undisturbed current by the Ekman relation : 

Figure 2 presents amplitudes of spectrum variation (e + q)’” and their phase shear 
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FIGURE 2. WW spectrum variations (integrated over all directions) caused by IW currents. (a) 
Amplitude of WW spectrum variations (v+fl)l'z normalized by Nourn K/Q, for various wind 
directions. (b) WW spectrum variation phase g5 = arctan (NJN,) .  The calculations were carried out 
using formula (39) for various wind directions with the following parameters: W = 10 m s-l, 
K = 5 x 10 rad m-l, h, = 50 m,f=  s-', Ap/p = 3 x lo+. 

$ = arctan (N,/N,) calculated by (34) for various wind directions. The strongest 
'response' of the WW spectrum to IW forcing occurs when the IWs propagate along 
the wind direction, and it is localized in the 'resonance' range of k. Spectral 
components with wavenumbers kW2/g < 10 propagate in the IW field in the quasi- 
adiabatic region ($ = 0 or n; the phase change at kW2/g  - 1 is due to the change of 
sign of &Vo/i3k,), and the component with kW2/g  2 30 evolves in the regime of local 
balance between source variations and the energy input caused by interaction of WWs 
with current gradients (6 z in). 

5.2. Interaction coeflcients 
Let us calculate IW-WW interaction coefficients (expressions (a), (45)) for various 
wind speeds and directions and ocean stratification parameters. Consider WWs to be 
developed and possessing spectrum (60). 

Figure 3 shows calculations of a and a,,, as a function of the angle between the JWs 
and the wind. In these and subsequent calculations the density difference across the 
pycnocline is prescribed, Ap/po = 3 x s-l. For 
wind blowing opposite to the IWs (135 < 0, < 180")' the modulation interaction 

and the Coriolis parameter is 
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FIGURE 3. IW-WW interaction coefficients as a function of wind direction: modulation mechanism 
(- 0 - 0 -) ; modulation and friction mechanisms ( - - 0). The calculations are carried out 
using (44), (45) with W = 10 m s-l, h, = 50 m, K = 5 x 10-aradm-l. 
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FIGURE 4. Interaction coefficients as a function of IW wavenumber for the two wind directions (a) 
8, = 0" and (b) 8, = 180": modulation mechanisms (-O-o-), modulation and friction 
mechanisms (.--.-a). The calculations are performed using (44), (45) with W =  10 m s-l, 
h, = 50 m. 

mechanism leads to IW growth. Under these conditions WW momentum variations 
are shifted from the thermocline trough to the back slope of the IW and vertical 
velocities (caused by spatial non-uniformity of WW momentum) provide energy flux 
to the IWs. For IWs propagating along the wind (and also perpendicular to the wind) 
the modulation mechanism results in IW decay. The friction interaction mechanism 
leads to IW decay for all wind directions. This is the result of the fact that for all 8, 
the 'surface force' equal to WW momentum losses has its component opposite to the 
orbital IW velocity, and does negative work. For the case when IWs propagate along 
the wind both mechanisms result in IW decay. When IWs propagate against the wind, 
their decay due to the friction mechanism turns out to be more effective than the 
growth due to the modulation mechanism. The total effect appears to be such that 
under the effect of WYs, IWs decay for all 8,. 

Figure 4 shows the modulus of the interaction coefficient as a function of IW 
wavenumber. With 0, = 0" the interaction coefficients are negative, whereas with 
0, = 180°, a, > 0, 01 < 0. The sharp decrease of \at, and la,\ at large K is explained 
by attenuation of the IW eigenfunction in the uniform layer. 
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FIGURE 5. IW-WW modulation and friction interaction coefficients as a function of uniform-layer 
thickness : 8, = 0" (- 0 - 0 -), 8, = 180" (0 - 0 - 0). The calculations are performed using 
(44). 

Figure 5 presents the dependence of the interaction coefficient on the uniform-layer 
thickness. As h, decreases, la1 grows approximately according to the hyperbolic law. 
IW decay depends significantly on wind speed (figure 6). An increase in wind speed 
from 5 to 20 m s-' results in an order of magnitude change in the IW decay coefficient. 
For wind along the IW direction ( W = 20 m s-') the e-fold decay of IW energy will 
take 30 periods, whereas for wind opposite to the IW direction it takes 100 periods. It 
follows from these calculations that for IWs which are isotropic over 9, IWs moving 
opposite the wind turn out to be the most long-living. In this case IW groups will reach 
a greater distance from the source the smaller is the wind speed. 

5.3 .  Joint forcing of feedback and spontaneous mechanisms 
The calculations presented in 35.2 show that joint action of modulation and friction 
mechanisms results in IW attenuation. At the same time the spontaneous mechanism 
leads to an increase of IW energy. If we assume that there are no other IW energy 
sources, the equation of the IW energy spectrum balance may be written thus: 

a 
at 
- E'(K, 8) = Isp + &E', 
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FIGURE 7. Angular spreading of the wind-IW energy spectrum (K = 5 x rad m-l) 
for wind speed 5, (---), 10 (-), 15 (------) m s-’. The calculations are performed using (70). 

where I S p  is the IW energy growth rate due to the action of the spontaneous mechanism 
(I8? equals the right-hand side of (58 ) ) ,  a is the IW attenuation decrement due to the 
action of the IW-WW feedback mechanism (a is defined by (44)). As the feedback 
mechanism plays the role of dissipation, (68) permits the existence of a stationary IW 
spectrum determined from the balance of terms in the right-hand side of (68): 

EL(K, 0) = Isp(K, O)/a(K,  0) 52. (69 4 
As the source of the IW energy is the wind, the IW spectrum defined by (69), may 

At IW-WW resonance, the interaction coefficient (44) may be written 
be called the spectrum of ‘wind IWs’. 

[i c0s4(8, - 8) N ,  ki 7, w,], (69 b) 
~ 3 1  

a =  
52 sinh (Kh,) (1 + coth Kh,) 

where the index m denotes parameter values for the WW spectrum maximum; I is the 
integral normalized by +jc0s4 (0, - 8) N ,  kk r, w, in the right-hand side of (44); the 
order of I is 1. Let us prescribe parameter values on the right-hand side of (69 b) in the 
following form : 

N ,  = aW9/g4, k ,  = g / W 2 ,  r, w, = const, cos (Or- 0) = 2C/W, 

Then (69) for the ‘wind IW’ spectrum takes the form 

52 W’ 
~ f i ( Q  - 8, + arccos (2C/ W)). EL(K,  9) = 2 ~ p ,  

Figure 7 shows the angular spreading of the ‘wind-IW’ energy spectrum at the 
wavenumber K = 5 x rad m-I for three values of the wind speed. IW spectral 
components propagating approximately normally to the wind possess maximum 
energy. It follows from (70) that the IW energy angular spreading is conditioned by the 
square of the WW angular spreading. This is why with a narrowing offp, the IW energy 
will concentrate compactly in the vicinity of the direction 8 = 8, - arccos (C/cg(km)). 
The IW energy level depends strongly on the wind speed; the calculations presented in 
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FIGURE 8. Wind-IW spectrum, integrated over all directions, as a function of wavenumber. The 
calculations are performed using (70) for wind speed 10 m s-l and mixed-layer depth 50 m. 

figure 7 show the IW energy to be proportional to W’ (see also (70)). Figure 8 shows 
the IW spectrum integrated over 0: 

EL(K) = P L ( K ,  0 ) d 0 .  

The wind-IW spectrum decreases both in the area of small and large wavenumbers, 
having its maximum in the vicinity of Kp w 2 x rad m-l, which equals the inverse 
thickness of the upper uniform layer: K p  w hi1.  The value - m2 is the estimate of 
the dispersion of thermocline oscillations by wind IWs (at W = 10 m s-’). This value 
corresponds to an IW energy equal to 3 x lo3 erg cm-2, which is substantially smaller 
than the background IW energy, equal to 105ergcm-2 (Garrett & Munk 1975). 
However, if the wind speed grows to 20 m s-l, the wind-IW energy may increase to 
3 x lo5 erg cm-2 and become comparable to the value characteristic of the background 
energy of oceanic IWs. 

Thus the joint action of the spontaneous and feedback (modulation and friction) 
mechanisms may result in the stationary IW spectrum. The time necessary for 
establishing this spectrum corresponds to the IW attenuation decrement (aQ)-l which, 
depending on the wind velocity and the IW frequency, will have values of from a few 
hours to several days. Significant values of the wind-IW energy may be achieved only 
at storm winds. 

6. Momentum balance in the mixed layer 
Let us analyse the distribution of momentum input from the atmosphere to the 

ocean’s upper layer between various types of motion. 
Note that IW phase velocities in characteristic oceanic conditions have values of 

C N 1 m s-l. The drift current velocity, with h, = 10-100 m, W - 10 m s - ’ , f=  - lop4 
s-l will have the value, from (67 b), of U = 0.2-0.02 m s-l. This is why terms O(KU/Q,) 
in the equations of momentum balance of IWs and drift currents (18) and (19), may 
be neglected. Having supplemented these equations with WW momentum conservation 
(2) averaged over the IW wavelength we obtain the following system describing 
momentum balance in the ocean’s upper layer: 
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If IWs are absent, but in the presence of a stationary WW spectrum and stationary drift 
current, the equation system (71)-(73) takes the form 

where 7: is the momentum flux in the atmosphere. Near the ocean surface 7: is divided 
into two components: the first, in the form of pressure pulsations correlated to surface 
slope, transforms into the WW momentum (7,"); the second, in the form of tangential 
stresses, induces the drift current (76). For developed WWs the momentum input from 
the atmosphere is completely lost due to wavebreaking and transforms into drift 
current momentum. As WW momentum losses are equal to the input of momentum 
from the atmosphere, the resulting force applied to the surface equals the momentum 
flux in the atmosphere. This force is balanced by the Coriolis force. 

Assume that IWs with momentum M i  appear in this dynamical system. The IW 
momentum losses under their interaction with turbulence are equivalent to the force 
(D' ) /C  applied to the current by IWs. The IW decay decrement on the upper-layer 
turbulence may be estimated by the valuet 

where K~ is the coefficient of turbulent mixing. If K~ is estimated as K~ - (10-4-10-2) m2 
s-l, with K = 5 x rad m-' and h, = 50 m, the decay decrement at is 2 x (10-6-10-4). 
This value is an order of magnitude smaller than the IW and WW interaction 
coefficients. Depending on 8,, the modulation interaction mechanism leads to a 
momentum flux from WWs to IWs or vice versa. This flux breaks the background 
balance of WW momentum that is expressed, in particular, in variations of surface 
force (&) inducing a drift current. It follows from (72) and (73) that IW momentum 
losses during friction interaction are also transferred to the drift current. Thus, 
variations in WW momentum losses by wave breaking, and IW momentum losses in 
friction interaction with WWs result in variations of the drift current velocity. 

Now we estimate current velocities induced by the IW field arising at the moment 
t = 0 in the background of the stationary Ekman current (67 b). We should expect that 
the integral scale of WW momentum relaxation is substantially smaller than the 
IW-WW interaction time. Therefore the momentum balance equation (71) may be 
written in a stationary form: 

(7,") - (d,") + ~,----8 = 0. ( EPW) 
t In the derivation of (75) the relation for Reynolds stresses in a form 7i, = po KI(i3ui/ax, + au,/axi) 

is used. 
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FIGURE 9. Temporal variation of inertial current amplitude (-) induced by IWs through their 
interaction with WWs. The calculations are carried out using (79) with 52 = 5.5 x rad s-l 
(K = 5 x 10+ rad m-l), a = -2 x lo+, h = 50 m, W = 10 m s-l, (A,/h,)* = 0.09. Also shown is the 
Ekman current modulus (---) calculated by formula (67b). (a) f = lo-* s-l, (b) f = s-l. 

During W - I W  interaction (7,") + (7,) = 7: = const, whereas variations of the 
surface force 8(7,+ d,"), as follows from (76), are equal to (u,aM;&). Then (73) for 
variations of drift current velocities (fi) takes the form 

a -  
- U, + eapt fp fit = - aQMf/(po ho). 
at 

Equation (77) with M i  = Mfaexp(aSlt) will have the following solution: 

where V = 0, +ifi2, Mf = Mf, +i  Mi,.  
The velocity modulus is found from the equation 

(77) 

Thus, IWs decaying under the interaction with WWs induce current variations with the 
inertial period. 

Figure 9 presents calculations of the inertial current amplitude (according to (79)) 
induced by IWs with the initial amplitude Ao/ho = 0.3 ( M i ,  is defined by (16)) for two 
values of the Coriolis parameter. On the same figure one can find the value of the 
background Ekman current, (67b). 
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After IW decay the inertial current amplitude has the value 

I%I 1 4  
= h cf" + ,2Q2)1/2 

0 0  

and it may be compared to the drift current velocity. However, if the initial IW 
amplitude decreases to Ao/ho = 0.1, the inertial current velocity decreases by an order 
of magnitude. Thus, inertial currents with amplitudes comparable with the Ekman 
current may be generated only by sufficiently intense IWs. 

7. Energy balance 
Let us supplement the equations for conservation of IW energy (23) and current (24), 

from which (UK/Q) terms are excluded, with the equations of WW energy balance, (8), 
averaged over the IW wavelength. Then the equation system of mechanical energy 
balance in the system IW-WWwrrent acquires the form 

The WW energy balance equation (83) is written in a quasi-stationary form as the 
scale of the WW energy relaxation is considerably smaller than the time of the IW 
decay, equal to (aQ)-'. The equation system (81)-(83) does not describe full 
mechanical energy balance in the upper layer, and it should be supplemented with the 
turbulent energy balance. This equation could not be deduced correctly in this paper 
as the momentum conservation equation taken as the initial one (see (1)) was averaged 
on turbulent scales. A correct derivation of this equation is beyond the limits of this 
work (the turbulence energy balance in the presence of WWs is analysed in detail by 
Kitaigorodskii & Lumley 1983). We will limit ourselves to a stationary, turbulent 
energy balance equation integrated in the mixed layer. Let us write it in the following 
way (Niiler & Kraus 1977) : 

where G is the turbulence source equal to losses of mechanical energy of other kinds 
of motion, B is the energy source due to the buoyancy force, Diss is the integral 
viscous dissipation of the turbulence. Equation (84) has to close the equation system 
(81)-(83), hence the source G must have the following form: 

G-Diss+B = 0, (84) 

G = ( D w )  - U, (a,") - ( ~ ~ 7 , " )  + D'. (8 5 )  
For stationary external conditions in the absence of IWs the mechanical balance in 

U,T," = 0, (Q; ) - (DW) = 0, (D")+B-Diss = 0. (86 u-c) 

Expressions (86) show that tangential surface stresses are orthogonal to the Ekman 
transport and they do no work; energy obtained by WWs from the atmosphere is lost 
due to wave breaking; energy lost by WWs generates turbulence balanced by buoyancy 

the layer -h,  < x3 < 0 is described by the following equation system: 
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force action and viscous dissipation. Note that (QZ ) - u:, hence turbulence 
generation in (86c) corresponds to the accepted parameterization of the source G - u: 
(see the review by Niiler & Kraus 1977). 

Consider the IW forcing (arising from the external source) on the energy of the 
turbulence and drift current. Using (83) and (81), we can write the turbulence energy 
balance as 

(Q~)-a52E1+B-Diss = 0. (87) 

In this equation we have excluded the term (d,") U, which is considerably smaller 
than (Qr) : ( d z )  U, /Qr - U/ W -g 1. It follows from (87) that the energy lost by IWs 
due to the modulation and friction mechanisms transfer into the turbulent energy. The 
ability of IWs (attenuating in their interaction with WW) to influence the turbulence 
energy balance is, apparently, conditioned by their initial energy. If we assume that 
the IW and WW energies are of the same order, then 

where /3, is the interaction coefficient, averaged over the WW spectrum Vm - 5 x lo-*). 
Then for 52 = 10-3-10-2 rad s-' the relation (88) will be of order Thus, IWs 
cannot influence the turbulent energy balance significantly. Energy variations of a drift 
current resulting from IW-WW interaction are described by (82). Let us represent the 
surface friction force as a sum (see (74), (76)): 

Then the equation of the drift-current energy balance will take the form 

a ( ip,  h, U 2 )  = (7: -a, QMD U,. 

Here U, consists of a sum of the undisturbed Ekman current (67b) and its variations 
(78). The ratio of wind stress work to the work of the force resulting from WW-IW 
modulation interaction will be of order 

a, QM; 
ra 

1 Ap  a,,, Kghi A' 
2 pa C, W 2  hi a 

This expression will equal 4A2/hi when K = 5 x rad s-l, h, = 50 my W = 10 m s-' 
and WWs moving along the IW direction. Thus, intensive IWs with A2/hi  - 0.1 may 
substantially affect the energetics of drift currents. After the IW attenuation, the 
increase of the drift-current energy (averaged over the inertial period) will be equal to 

$Po h, 1 J I 2 Y  

where Iu is the modulus of the velocity's inertial oscillations defined by (80). 

8. Summary and conclusion 
The present paper deals with internal-wave (IW) generationlattenuation resulting 

from their interaction with wind waves (WWs). Three mechanisms of WW-IW 
coupling are distinguished. The first is the mechanism of spontaneous generation which 
was comprehensively analysed by Olbers & Herterich (1979). The spontaneous 
generation mechanism describes resonant generation of IWs by a random field. This 
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mechanism can generate IWs from the state of rest. If IWs have already been generated 
by this or another source (the spontaneous mechanism, in particular), surface currents 
of the IWs induce a WW spectrum transformation. As a result thermocline- 
displacement-correlated variations of the WW momentum occur. The second 
mechanism of WW-IW coupling, i.e. the modulation mechanism, is connected with 
these thermocline displacements (Kudryavtsev 1988 ; Watson 1990). Spatial mo- 
mentum induces vertical motions which form energy and momentum fluxes between 
WWs and IWs. The modulation mechanism is a feedback mechanism resulting in 
exponential IW attenuation or growth depending on the direction of the IWs relative 
to the wind. It is necessary to note that the modulation mechanism functions only at 
a phase difference between thermocline displacements and WW momentum variations. 
However, the phase difference is a consequence of integral losses of WW energy and 
momentum. These losses occur, mainly, due to wave breaking and in the developed 
WWs they balance energy and momentum inflows from the wind. Under the WW 
spectrum transformation, in the IW current field periodic variations of WW momentum 
losses occur, equivalent to variations of surface stresses, which are correlated with IW 
surface currents. 

The work of these stresses against IW orbital velocities causes the third mechanism 
of WW-IW coupling, i.e. the friction mechanism. This mechanism is analogous to the 
maser mechanism of long-surface-wave growth under interaction with a short wave 
(Longuet-Higgins 1969). Applying it to the problem of the effect of WWs on IW 
attenuation/growth, the maser mechanism is considered in this paper (Kudryavtsev 
1988; Thorpe et al. 1987). However, in the problem of WW-IW coupling the principal 
matter is the analysis of the joint action of the modulation and friction mechanisms. 
Separate consideration of these mechanisms is physically incorrect; the modulation 
mechanism requires losses of momentum and energy in WWs (formally the presence 
of a phase difference between IW currents and WW momentum variations). The 
presence of momentum losses in WWs, and variations of these losses, inevitably causes 
the friction mechanism of WW-IW coupling. 

Joint action of the friction and modulation mechanisms results in exponential IW 
attenuation for all directions of IWs relative to the wind. For opposite directions of 
IWs and wind, the friction mechanism plays the dominant role, whereas for following 
directions the contribution of friction and modulation mechanisms to the IW 
attenuation is equal. IWs propagating along the wind direction attenuate especially 
strongly, which is why in the case of IW generation by a point source, IWs propagating 
against the wind will be the longest-lived ones. For characteristic oceanic conditions 
(wind velocity 10 m s-', thermocline depth 50 m) and IW wavelengths of 103-104 m, 
the frequency-normalized decrement of IW attenuation has the value of (2-5) x 
In storm conditions (wind velocity 20 m s-') with a shallow thermocline, the decrement 
may exceed the value of The feedback mechanism of IW attenuation considered 
in the paper is substantially more effective than IW attenuation on the upper-layer 
turbulence, and it may influence strongly the energetics and propagation of IW in the 
ocean. In the absence of external IW generators, the mechanism of spontaneous 
generation is the only source of IW energy. In this case the existence of a stationary IW 
spectrum is possible. This spectrum results from a balance between the energy inflow 
caused by the spontaneous generation, and energy losses due to the work of the 
modulation and friction mechanisms. The ' wind-IW' spectrum depends strongly on 
wind velocity (- W'). The spectral maximum coincides with the direction almost 
normal to the wind and it is located at a wavenumber close to the inverse depth of the 
thermocline: K - hi ' .  The wind-IW energy is of order lo3 ergcm-2, which is 



The coupling of wind and internal waves 59 

significantly smaller than the background IW energy estimated as lo6 erg cm-, (Garrett 
& Munk 1975). However, in storm conditions ( W = 20 m s-') the wind-IW energy may 
attain lo6 erg 

The present paper analyses the WW-IW interaction with due regard to their 
influence on the dynamics of the ocean's upper layer. For this purpose we consider the 
dynamical system WW-IW-drift currents-turbulence in which in the absence of 
external sources momentum is conserved and energy is lost only due to viscous 
dissipation. Wind and some generator inducing IWs in the first face, are considered as 
external energy and momentum sources. When IWs are absent, there is a stationary 
balance of WW momentum and energy, Ekman current and turbulence in the upper 
layer. The growth of IWs violates the energy and momentum distribution that already 
exists in the upper layer. Losses of IW momentum results from their interaction with 
WWs contribute to generation of inertial oscillations in the drift current. The 
amplitude of these inertial oscillations is comparable to the velocity of the background 
Ekman current. However, it occurs with the attenuation of rather intensive IWs with 
initial amplitude equal to one third of the thermocline depth. 

Energy lost by IWs in their interaction with WWs is spent both on additional 
turbulence generation and the generation of inertial oscillations. However, the 
contribution of IW energy losses to turbulence generation turns out to be significantly 
smaller than the source which is equal to WW energy losses due to wave breaking. The 
source of the inertial oscillation energy is the work of a force equal to IW momentum 
losses (in the modulation interaction). If there is intensive IW attenuation, this source 
may be comparable to the work of wind surface stresses. 

I would like to thank Dr S. Stanichny for help with the model calculations. I am also 
grateful for many useful comments made by referees and Dr G. Watson (School of 
Mathematics, University of Bristol). 

Appendix. The spontaneous mechanism of IW generation 
The rate of IW energy growth due to the energy flux from the random surface wave 

field (the spontaneous mechanism of IW generation) has been obtained by Olbers & 
Herterich (1979). We present here a simple derivation of this expression based upon the 
approach employed in this paper. 

Let the surface wave field be Gaussian, with a narrow spectrum S(k) or its frequency 
analogue F(w). The mean wavenumber and frequency are denoted as (kk), and w,. The 
spectrum width is assumed to be large enough to contain a pair of harmonics resonant 
with IWs that move along the x,-axis. Let the WW spectrum width along the k,-axis 
be dk, and along the kl-axis Ak,(Akl K, dk, << MI, k,  B AkJ The WW momentum 
for this spectrum is defined by the expression 

(A 1) 
where a2(x , t )  is the amplitude squared of surface elevations, which is a random 
function. The mean value of the amplitude squared is related to the spectrum via 

$? w S(k) dk, Akl. 

Let us represent the WW momentum variation (A?;) in the form of a series: 

M,W(x, 0 = $o,g(kJ, a2(x, Olw,, 

&,W(X, t )  = ~ A ? ; ( K )  sin [K,(x,- cga t )  + 93, (A 2) 
where dA$(K) is the harmonic amplitude, 9 is the harmonic phase and cg is the group 
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velocity. Assume that among the harmonics forming the series (A2), there are 
harmonics satisfying the condition of resonance (31) with IWs propagating along the 
axis x l :  

In this case the correlation takes the form 

5 = Acos(K~, -Qt + $). (A 3) 

here vrn is amplitude of 7-variations. 
Taking into account expression (15) for the IW energy and (43) connecting 

oscillation amplitudes of the free surface qrn and the thermocline A, the equation of the 
energy balance 

may be rewritten in the following way: 

A = -  2Apgsinh(Kh0) 1 *' [dfiydt, 

where A(0) = 0 is chosen as the initial condition. The expression (A 6) is written for 
variations of the IW amplitude generated by the group of surface waves, which may 
be considered as a random sample from the realization ensemble. Then the expression 
for the growth of the IW amplitude squared averaged over a random realization 
ensemble can be obtained from relation (A 6): 

The correlation function of momentum variation amplitudes dfiy(t,) dfiy(t + T )  

may be expressed through the correlation function of the envelope squared of a 
narrow-band Gaussian process (Levin 1974). In this case it has the following form: 

(A 8) d&y(t,) dfiy(t, + T )  = 4 ( ~ ) ' R ' ( T ) ,  

where the correlation coefficient R equals 

R(T) = F,(w) cos WT dw F,(o) dw. (A 9) L 1L 
Here F,(w) = F(w - w,) is the spectrum displaced to low frequencies. Let us assume the 
time under consideration to be much longer than the temporal scale of R(T). Taking 
into account (A 8) the expression (A 7) take the following form: 

t(w)' R'(T) dT. 
Q4 Ax = 

(Apg sinh (Kh,))' - W  

- 
In (A lo), dMy is a part of the WW momentum satisfying the resonance condition 

(31), which is expressed through the spectrum in the following way: 

(A 11) 
kl W = peg; tW1- V ,  k,) + Wl + K/2, k,)] dkl dk,, 
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where k ,  and k ,  are connected by resonant condition (31). In this case the correlation 
coefficient (A 9) is 

527 sin ( d m / 2 )  
R(7) = cos h) 

d w / 2  

here dw = c, dk is the frequency width of a spectral resonant segment. For R(7) set by 
(A 12) and with dw < 52 the integral in (A 10) has the value 

Assume that the spectrum is quite smooth, and with k, % K we may consider that 
S(k, -fK, k,) + S(k, +$K, k,) = 2S(k,, k,). The expression (A 11) may be rewritten as 

As IW energy concentrates in the spectral area dK, dK, = dk, dk,, then taking into 
account (A 13) (A 14) and (A 10) the spectrum of thermocline displacement S’(K,, 8) 
will be equal to - 

Q5t 

(g AP/P,,)~ sinh2 (Kh,) 
- 4n [k; S 2 ( k  8) dk]e,e,, (A 15) S’(K, 8) = - - A2/2  

ak d 8  

cos8, = c / c , .  

If the WWs have an arbitrary spectrum then (A 15) relates to a small spectral area in 
the vicinity of resonant curve (31). Having summed the expressions (A 15) over the 
whole resonance area of the WW spectrum, and using (14), we obtain the final 
expression for the rate of IW spectrum energy growth under the spontaneous 
mechanism of generation : 

S(k, S,) dk. (A 16) 
Q3K aE’(K, 8) - 

at - 4np0 sinh2 (Kh,) (r + coth Kh,) 

The expression (A 15) is equivalent to the result by Olbers & Herterich (1979) (see 
also expression (3.16) from the paper by Watson 1990). 
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